
Accurately computing large floating-point numbers using

parallel computing

Tanvir Kaykobad
School of Computer Science

Carleton University
Ottawa, Canada K1S 5B6

TanvirKaykobad@cmail.carleton.ca

December 11, 2017

Abstract

Parallel algorithms for accurately summing floating-point numbers are investigated
and one is implemented. Primarily Goodrich et al.’s superaccumulator mapreduce al-
gorithm is analyzed and the performance of the algorithm is compared.

1 Introduction

Addition of floating point numbers is nonassociative. The problem of addition of large
number of floating point numbers arises when, for example, we need to find dot product of
vectors having large number of coordinates. largehere are SIMD algorithms for accurately
summing up very large number of small and large floating point numbers in parallel. It
is known that for accurately summing up such a set of numbers one has to use snowball
effect to obtain larger numbers from smaller ones. This idea is explored to see if it can
be extended in parallel computing by introducing a huffman-tree like structure to pair
floating point numbers of similar magnitude so that they can be summed up more accurately,
ensuring minimum rounding error in the worst case while compromising as little as possible
in non-parallel computation time. However, no non-heuristic algorithm currently exists for
parallelizing Huffman-tree computation. Thus I have opted for implementing and testing the
existing state of the art algorithm provided by Goodrich and Eldawy [3] My implementation
has been similar to that of Goodrich’s, however I have summed the carry bit afterwards
which requires an iteration of all the digits in the resulting number that Goodrich avoided.

2 Literature Review

Demmel and Nguyen [2] used Rumps algorithm for floating point summation that is re-
producible independent of the order of summation that may be different with the dynamic
scheduling of parallel computing resources and floating point non-associativity. Their ab-
solute error bound is 2−28 times macheps, and requires constant amount of extra memory
usage. Demmel and Hida [1] analysed several algorithms and showed that if a wider ac-
cumulator of F bits is used to sum n floating point numbers each of at most f bits, and if
sum is carried out in descending order of exponents then an error of at most 1.5 times the

1



least significant bit can occur provided that number of summands does not exceed 2(F−f).
Rump, Ogita and Oishi [9] in 2008 showed that their algorithm results in a value nearest
to the true sum. Their algorithm provably computes a faith-fully rounded result using only
ordinary floating-point addition, subtraction and multiplication. In 2013 the authors [4]
have shown how to use tree reduced parallelism to compute sum by using parallel associa-
tive reduction, iterative refinement and conservative early detection to obtain an algorithm
of order log n. Neal [8] presented two algorithms in one of which a small superaccumulator
with 67 64-bit chunks each with 32-bit overlap with the next chunk was used to allow carry
propagation to be done infrequently. Kai and Wang [5] have shown that computing ensuring
minimum error when n numbers can be both positive and negative is NP-hard. However
their algorithm can sum with no more than 2dlog (n− 1) + 1e ∗ ε, where ε is the worst case
minimum error over all possible orders. Goodrich and Eldawy [3] presents an algorithm
named MapReduce that according to their experimental evaluation achieves up to 80X per-
formance speedup as compared to the state-of-the-art sequential algorithm. The algorithm
yields linear scalability with both the input dataset and number of cores in the cluster.
H. Leuprecht and W. Oberaigner [6] proposed a parallel algorithm, a pipeline version of
Pichat and Bohlender algorithm, where the sum is associated with a tree. They also discuss
the properties a multiprocessor architecture should have for efficient implementation of the
algorithm. Malcolm [7] divided each of the n t-digit numbers, forming qn t-digit floating
point numbers is then added to one of several auxiliary t-digit accumulators. Finally, the
accumulators are added together to get the computed sum.

3 Algorithm

Normally floating point numbers are represented as

x = (−1)b ∗ (1 + 2−tM) ∗ 2E−2
l−1−1

. Here variable t and l are set for different fixed precision scheme. There are two main
issues that are found in summing floating-point numbers.

• Round off error while adding floating-point numbers

• Achieving parallelism in the process of summing up the floating-point numbers

Summing two floating point number can be shown as

x⊕ y = (x+ y)(1− εxy)

where εxy is specific round off error for specific machine. A standard way to sum numbers
is creating a binary tree, but there are 2 problems-

• If the set of floating-point numbers contain both positive and negative numbers then
finding its ’Huffman tree’ is an NP-complete problem. [5]

• Even if all the floating-point numbers are positive, they are prone to round off errors.

Initially my goal was to implement a parallelized ’Huffman tree’ structure for finding the
smallest floating-point numbers and then summing them so the result would have a snow
ball effect reducing the error in the final result. However Kao and Wang [5] showed that

2



finding the ’Huffman tree’ is an NP complete problem for positive and negative numbers
combined. However, in case of positive and negative numbers we can construct two Huffman
trees- one for positive ones and the other for negative ones. It is obvious that the numbers
can be grouped into positive and negative numbers in O(n) sequentially but can be done
in logarithmic time parallely. after isolating positive and negative numbers heaps can be
constructed in O(n) time sequentially and in log2(n) parallely using heap construction by
adjustment. However, in sorting phase it demands efforts of higher order. This is why this
approach was not pursued for implementation although a heuristic algorithm could have
been developed with an acceptable order of computation. Ideally we need a method which
will work for independent precision points. To achieve this Goodrich and Eldawy [3] convert
the numbers to a different representation, compute the sum exactly in that representation
and then convert the result back to a faithfully rounded format. Also, it has to be ensured
that there are no carry bits in intermediate representation which helps to parallelize the
process. To achieve these goals one option is to represent each number by shifting its
binary point. This representation wastes a lot of memory but is error free. But it has
a lot of carry bit which does not help in parallel processing but nonetheless is promising
due to it precision. A second option is to represent the floating point numbers using super
accumulator where floating point number is represented as a vector with strictly increasing
exponents. Neither of these systems help parallelization because of the carry required for
each bit which in turn requires an O(n) cost for propagating a carry calculation all the way
from the least significant bit to the most.

In Goodrich and Eldawy’s work they allow each yi to be positive or negative. The
floating point numbers are shifted right without the loss of generality as it can be shifted
back later on while keeping the sign bit (GSD) to identify positive and negative numbers.
A super accumulator is called (α, β) regularized if yi = Yi ∗ Ri. For a given radix and
each mantissa Yi in a range [−α, β] for α, β ≥ 2. For a fixed t, R is chosen to be a power
of two 2t−1 > 2 so that each yi can be represented using floating point exponent storing
a multiple of t − 1. For simplicity the authors chose α = β = R − 1. The sum of two
super accumulators yi amd zi first the sum of the mantissa Pi = Yi + Zi is computed.
This sum is then reduced to an interim mantissa sum Wi = Pi −Ci+1Rj where Ci+1 is the
signed carry bit of value between −1, 0, 1. It is chosen to guarantee that W is in the range
[−(α−1), β−1]. The computed mantissa sum is then performed as Si = Wi+Ci so that the
resulting collection of Si components is (α, β) regularized and no carry bit propagation is
necessary.In this regularized representation carry beats do not propagate beyond a single bit
which gives us the opportunity of parallelization. Flexibility of representation of numbers
in this regularized representation gives us the opportunity of accommodating the carry beat
in the neighboring bit limiting its propagation further. However, at the end of computation
the numbers can be converted to traditional system of representation.

4 Results

In my code I have failed to implement (α, β) regularization and its inverse properly. So
instead of using it for avoiding carry bit summation, in my implementation, I have opted
for O(k + d) scan over the result where k is the maximum number of digits corresponding
to integer part of all summands, and d is the largest number of digits in decimal parts.
While this is a cost that I suspect would cost a performance reduction in cases where the
value of k +d is extremely large, since this is a sum over integers (carry bit) instead of

3



floating-point numbers and because k +d is usually a much smaller number compared to n,
this limitation’s adverse effect should be minimal.

Let us add n numbers yi = (zidi) where zi is the integer part and di is the possible decimal
part. Let maximum zi contain k digits and max(di) contain d digits. Then maximum size
of the sum could be k + d+ blogb nc digits. Let us further assume that size of accumulator
is s. Then divide each number into chunks of s−blogb nc− 1 digits and indexing from right

to obtain yi = (yip, yip−1, ..., y0), where p =
⌈

k+d
s−blogb nc

⌉
. Now,

p∑
j=0

yij can be calculated

exactly (assuming that they are integers) in logarithmic time by using ≈ n
log2 n

processors.
Let sum of chunk i is denoted by xi for i = 0, ..., p xp being overall overflow neighboring xi
and xi+1 can be added to calculate the value of the chunk and possible overflow that should
be added to the sum of the immediate left chunk. This will take time linear in number of
chunks each number has been linear in number of chunk divided into. However, again if the
number of chunks is too large one can apply (α, β) regularization for bringing complexity
down to logarithmic one.

Figure 1: Total running time obtain by Goodrich and Eldawy [3] as the input size increases
from 1 million to 1 billion numbers

Figure 2: Performance between 256 threads and 1 thread running on NVidia GTX570 on
Windows for N random floating-point numbers

In my test I have used an Nvidia GTX 570 processor on a windows machine. The
parallized (blue) version of the program used 256 threads while the non-parallelized version
used 1 thread per block. As we can see, the parallel version of the algorithm works much
better than its sequential counterpart (running 1 thread instead of 256 threads). However,
the result is significantly inferior to that obtained by Goodrich and Eldawy This is partly
due to the time taken in processing the data into the right format (extracting the mantissa

4



and the exponent). Also the different calculation for the carry bit handling played a role in
the result as well.

5 Conclusion

In this project I have implemented a parallelized algorithm for summing large number of
floating-point numbers accurately. We have seen that the parallel implementation runs
noticeably faster than the non-parallelized implementation of the algorithm. However, be-
cause my implementation of (α, β) regularization had flaws, I ended up linearly summing
the carry bit instead of avoiding it like it was proposed by Goodrich and Eldawy. None-
the-less the performance was inferior but comparable to the performance they got in their
paper. Since I did not use the exact same machine as they have, it is hard to compare the
exact performance difference between my implementations. For further work the (α, β) reg-
ularization function needs to be fixed for a more accurate performance comparison between
the implementations.

References

[1] J. Demmel and Y. Hida. Accurate and efficient floating point summation. SIAM Journal
on Scienti

c Computing, 25(4):1214–1248, 2004.

[2] J. Demmel and H. D. Nguyen. Parallel reproducible summation. IEEE TC, 64(7):2060–
2070, July 2015.

[3] Goodrich, M. T., and Eldawy. Parallel algorithms for summing floating-point numbers.
Proceedings of the 28th ACM Symposium on Parallelism in Algorithms and Architec-
tures, pages 13–22, July 2016.

[4] E. Kadric, P. Gurniak, and A. DeHon. Accurate parallel floating-point accumulation.
21st IEEE Symp. on Computer Arithmetic (ARITH), 31(1):153–162, April 2013.

[5] M.-Y. Kao and J. Wang. Linear-time approximation algorithms for computing numerical
summation with provably small errors. SISC, 29(5):1568–1576, 2000.

[6] H. Leuprecht and W. Oberaigner. Parallel algorithms for the rounding exact summation
of floating point numbers. Computing, 28(2):89–104, 1982.

[7] M. A. Malcolm. On accurate floating-point summation. Commun. ACM, 14(11):731–
736, November 1971.

[8] R. M. Neal. Fast exact summation using small and large superaccumulators. arXiv
ePrint, abs/1505.05571:153–162, 2015.

[9] S. M. Rump, T. Ogita, and S. Oishi. Accurate floating-point summation part i: Faithful
rounding. SIAM Journal on Scienti

c Computing, 31(1):189–224, 2008.

5


